
Continuous Integration
for XML and RDF Data

Sandro Cirulli
Language Technologist

Oxford University Press (OUP)

6 June 2015

Table of contents

1. Context

2. Continuous Integration with Jenkins

3. Automatic Deployment with Docker

4. Future Work

Oxford University Press
Context

I Oxford University Press (OUP) is a world-renowned
dictionary publisher

I OUP launched the Oxford Global Languages (OGL) initiative
to digitize under-represented languages

I Language data is converted into XML and RDF

3/19

http://www.oxforddictionaries.com/words/oxfordlanguages

Where we started from
Challenges

I OUP dictionary data was originally developed for print
products

I OUP acquired dictionaries from other publishers in various
formats

I Data conversions were performed by freelancers using various
programming languages, tools, and development
environments

I No testing, no code reuse

4/19

Our aim

I Produce lean, machine-interpretable XML and RDF

I Leverage Semantic Web technologies for linking and
inference

I Convert tens of language resources in a scalable,
maintainable, and cost-effective manner

5/19

Continuous Integration
What it is

I Continuous Integration (CI) is a software development
practice where a development team commits their work
frequently and each commit is integrated by an automated
build tool detecting integration errors

I CI requires a build server to monitor changes in the code, run
tests, build, and notify developers

I We use Jenkins as it is the most popular open-source CI
server

6/19

Continuous Integration
Workflow and components

7/19

Continuous Integration
Nightly Builds

I Nightly builds are automated builds scheduled on a nightly
basis

I We currently builds XML and RDF for 7 datasets

I Nightly builds currently take on average 5 hours on a
multi-core Linux machine with 132 GB RAM

I Builds are parallelized using 8 cores

8/19

Continuous Integration
Unit Testing

I XSpec for XSLT code

I RDFUnit for RDF data

I Test results are converted into JUnit reports via XSLT

I Unit tests are run shortly after a developer commits the code

9/19

Continuous Integration
Monitor View

10/19

Continuous Integration
Benefits of CI

I Code reuse: on average, 70-80% of the code could be reused
for new XML/RDF conversions

I Code quality: regression bugs are avoided

I Bug fixes: bugs are spotted quickly and fixed more rapidly

I Automation: no manual steps, faster and less error-prone
build process

I Integration: reduced risks, time, and costs for integration
with other systems

11/19

Continuous Integration
Jenkins Demo

12/19

Automatic Deployment with Docker
Docker

I Docker is an open source platform for deploying
distributed applications running inside containers

I Docker provides development and operational teams with a
shared, consistent environment for development, testing,
and release

I Docker avoids the classic ’but it worked on my machine’
issue

I Docker allows applications and their dependencies to be
moved portably across development and production
environments

13/19

Docker Containers

14/19

Automatic Deployment with Docker
Dockerfile

FROM platform_base
MAINTAINER Sandro Cirulli <sandro.cirulli@oup.com>

eXist-DB version
ENV EXISTDB_VERSION 2.2

install exist
WORKDIR /tmp
RUN curl -LO http://downloads.sourceforge.net/exist/

Stable/${EXISTDB_VERSION}/eXist-db-setup-${
EXISTDB_VERSION}.jar

ADD exist-setup.cmd /tmp/exist-setup.cmd

run command line configuration
RUN expect -f exist-setup.cmd

15/19

Automatic Deployment with Docker
Dockerfile (cont.)

RUN rm eXist-db-setup-${EXISTDB_VERSION}.jar exist-
setup.cmd

set persistent volume
VOLUME /data/existdb
WORKDIR /opt/exist

change default port to 8008
RUN sed -i ’s/default="8080"/default="8008"/g’ tools/

jetty/etc/jetty.xml

EXPOSE 8008 8443

ENV EXISTDB_HOME /opt/exist

CMD bin/startup.sh
16/19

Future Work

I Scalability: cloud instances to run compute-intensive
processes, distribute builds across slave machines

I Availability: Circuit Breaker Design Pattern

I Code coverage: lack of code coverage tools for XSLT
(XSpec and Cakupan are the best we could find)

I Deployment orchestration: docker-compose to orchestrate
Docker containers

17/19

Acknowledgements

The work described here was carried out by a developers team at
OUP:

I Khalil Ahmed

I Nick Cross

I Matt Kohl

I and myself

18/19

Thank you for your attention!
Any questions?

Slides available at:
www.sandrocirulli.net/xml-london-2015

Contact me at:
sandro.cirulli@oup.com

http://www.sandrocirulli.net/xml-london-2015
mailto:sandro.cirulli@oup.com

