
Continuous Integration for XML and RDF
Data

Sandro Cirulli

Oxford University Press

<sandro.cirulli@oup.com>

Abstract

At Oxford University Press we build large amounts of XML
and RDF data as it were software. However, established
software development techniques like continuous integration,
unit testing, and automated deployment are not always
applied when converting XML and RDF since these formats
are treated as data rather than software.

In this paper we describe how we set up a framework
based on continuous integration and automated deployment
in order to perform conversions between XML formats and
from XML to RDF. We discuss the benefits of this approach
as well as how this framework contributes to improve both
data quality and development.

Keywords: Jenkins, Unit Testing, Docker

1. Introduction

Oxford University Press (OUP) is widely known for
publishing academic dictionaries, including the Oxford
English Dictionary (OED), the Oxford Dictionary of
English (ODE), and a series of bilingual dictionaries. In
the past years OUP acquired a large number of
monolingual and bilingual dictionaries from other
publishers and converted them into the OUP XML data
format for licensing purposes. This data format was
originally developed for print dictionaries and had to be
loosened up in order to take into account both digital
products and languages other than English. Conversion
work from the external publishers' original format was
mainly performed out-of-house, thus producing a large
number of ad hoc scripts written in various
programming languages. These scripts needed to be re-
run each time on in-house machines in order to
reproduce the final XML. Code reuse and testing were
not implemented in the scripts and external developers'
environments had to be replicated each time in order to
rerun the scripts.

As part of its Oxford Global Languages (OGL)
programme [1], OUP plans to convert its dictionary data

from a print-oriented XML data format into RDF. The
aim is to link together linguistic data currently residing
in silos and to leverage Semantic Web technologies for
discovering new information embedded in the data. The
initial steps of this transition have been described in [2]
where OUP moved from monolithic, print-oriented
XML to a leaner, machine-interpretable XML data
format in order to facilitate transformations into RDF.
[2] provides examples of conversion code as well as
snippets of XML and RDF dictionary data and we
recommend to refer to it for understanding the type of
data modelling challenges faced in this transition.

Since the OGL programme aims at producing lean
XML and RDF for 10 different languages in its initial
phase and for tens of languages in its final phase, the
approach of converting data with different ad hoc scripts
would not be scalable, maintainable, or cost-effective. In
the following chapters we describe how we set up a
framework based on continuous integration and
automated deployment in order to perform conversions
between XML formats and from XML to RDF. We
discuss the benefits of this approach as well as how this
framework contributes to improve both data quality and
development.

2. Continuous Integration

Continuous Integration (CI) refers to a software
development practice where a development team
commits their work frequently and each commit is
integrated by an automated build tool detecting
integration errors [3]. In its simplest form it involves a
build server that monitors changes in the code repository,
runs tests, performs the build, and notifies the developer
who broke the build [4] (p. 1).

2.1. Build Workflow

We adopted Jenkins [5] as our CI server. Although we
have not officially evaluated other CI servers, we decided
to prototype our continuous integration environment
with Jenkins for the following reasons:

doi:10.14337/XMLLondon15.Cirulli01Page 52 of 177

• it is the most popular CI server with 70% market
share [6]

• it is open source and allows to prototype without
major costs

• it is supported by a large number of plugins that
extend its core functionalities

• it integrates with other tools used in-house such as
SVN, JIRA, and Mantis

Nevertheless, we reckon that other CI servers may have
equally fulfilled our basic use cases. On the other hand,
specific use cases may require different CI servers: for
example, Travis CI may be a better choice for open
source projects hosted on GitHub repositories due to its
distributed nature whereas Bamboo may be a safer
option for businesses looking for enterprise support in
continuous delivery.

Figure 1, “Workflow and components for converting
XML and RDF” illustrates the workflow and the
components involved in converting and storing XML
and RDF data via Jenkins.

Figure 1. Workflow and components for converting
XML and RDF

eXist-db
XML Repository

Jenkins CI

JIRA Bug Tracker

SVN
Code Repository

Graph DB
RDF Triple Store

1 GET PUT3a

2

PUT
3b

4

XML data in print-oriented format is stored on the XML
repository eXist-db. The data is retrieved by Jenkins via a
HTTP GET request (1). Code for converting print-
oriented XML and building artifacts is checked out from
the Subversion code repository and stored in Jenkins's
workspace (2). The build process is run via an ant script
inside Jenkins and the converted XML is stored in eXist-
db (3a). Should the build process fail, Jenkins
automatically raises a ticket in the Jira bug tracking
system (4).
The same workflow occurs in the RDF conversion.

XML data converted in the previous process is retrieved
from eXist-db (1), converted by means of code checked
out from Subversion (2), and stored in the RDF Triple
Store Graph DB (3b).
The core of the build process is performed by an ant

script triggered by Jenkins. Figure 2, “Build process steps
for XML and RDF conversions” shows the steps involved
in the build process for XML and RDF conversions.

Page 53 of 177

Continuous Integration for XML and RDF Data

Figure 2. Build process steps for XML and RDF
conversions

Clean
workspace

Set properties
and input

parameters

Build XProc
pipeline

Test XProc
pipeline

Retrieve XML
from eXist-db

Convert XML
via XProc
pipeline

Validate XML

Store XML in
eXist-DB

Clean
workspace

Set properties
and input

parameters

Retrieve XML
from eXist-db

Convert to
RDF/XML via

XSLT

Validate RDF/
XML

Convert RDF/
XML to N-triples

Convert OWL
ontology to N-

triples

Validate N-
triples via
RDFUnit

XML conversion RDF conversion

Store RDF/
XML in Graph

DB

2.2. Nightly Builds

Nightly builds are automated builds scheduled on a
nightly basis. We currently build data in both XML and

RDF for 7 datasets and the whole process takes about 5
hours on a Linux machine with 132GB of RAM and 24
cores (although only 8 cores are currently used in
parallel). The build process is performed in Jenkins via
the Build Flow Plugin [7] which allows to perform
complex build workflows and jobs orchestration. For our
project the XML ought to be built before the RDF and
each build is parametrized according to the language to
be converted. The Build Flow Plugin uses Jenkins
Domain Specific Language (DSL), a Groovy-based
scripting language. In this case we used this scripting
language as it ships with the Build Flow Plugin and the
official plugin documentation provides several examples
of complex parallel builds. Example 1, “XML and RDF
builds for English-Spanish data” shows the DSL script
for building XML and RDF for the English-Spanish
dictionary data.

Example 1. XML and RDF builds for English-Spanish
data

out.println 'English-Spanish Data Conversion'
// build lexical XML full data
build("lexical_conversion",
 source_lang: "en-gb",
 target: "build-and-store",
 build_label: "nightly_build",
 input_type: "oxbiling",
 input: "full",
 target_lang: "es")
// build RDF full data
build("lexical_rdf_conversion",
 input_source: "database",
 source_type: "dict",
 source_language: "en-gb",
 target_language: "es",
 target: "update-rdf")

Builds are run in parallel and make use of the multi-core
architecture of the Linux machine. For our current needs
Jenkins is set to use up to 8 executors on a master node
in order to build 7 datasets in parallel. Compared to a
sequential build run on a single executor, the parallel
build reduced by several hours the total execution time of
nightly builds. In the future we foresee to increase the
number of executors as we convert more datasets and to
run nightly builds and other intensive process on slave
nodes in order to scale horizontally.

2.3. Unit testing

Unit testing was originally included in the build process.
However, since the builds took several hours before
producing results, we decided to separate the building
and testing processes in order to provide immediate
feedback to developers. We created validation jobs in

Page 54 of 177

Continuous Integration for XML and RDF Data

Jenkins that poll code repositories on the SVN server
every 15 minutes and run tests within minutes from the
latest commit. Should tests fail, a JIRA ticket is assigned
to the latest developer who committed code and the
system administrator is notified via email.

Unit testing for XSLT code is implemented using
XSpec [8]. [9] suggested the use of Jxsl [10], a Java
wrapper object for executing XSpec tests from Java code.
We took a simpler approach which does not require the
use of Java code. XSpec unit tests are run within the ant

task as outlined in [11] and the resulting XSpec HTML
report is converted into JUnit via a simple XSLT step.
Since JUnit is understood natively by Jenkins, it is
sufficient to store the JUnit reports into the directory
where Jenkins would expect them to be in order to take
advantage of Jenkins's reporting and statistical tools.
Example 2, “XSpec unit test” shows how all the XSpec
HTML reports are converted into JUnit within an ant
script.

Example 2. XSpec unit test

<for param="file">
 <path>
 <fileset dir="${test.dir}" includes="**/*.xspec"/>
 </path>
 <sequential>
 <echo>convert XSpec test results into JUnit XML</echo>
 <propertyregex override="yes" property="basename" input="@{file}"
 regexp=".+[\\/]([^\\/]+?)\.xspec" replace="\1"/>
 <xslt in="${test.dir}/results/${basename}-result.html"
 out="${test.dir}/results/${basename}-result.junit"
 style="${shared.dir}/xsl/xspec_to_junit.xsl" force="true">
 <classpath location="${saxon.jar}"/>
 </xslt>
 </sequential>
</for>

RDF data is tested using the RDFUnit testing suite [12]
which runs automatically generated test cases based on a
given schema. The output is generated in both HTML

and JUnit. Figure 3, “Report for RDFUnit tests” shows a
screenshot of the HTML report (the top level domain
has been hidden for security reasons).

Figure 3. Report for RDFUnit tests

As shown in Figure 2, “Build process steps for XML and
RDF conversions”, the XProc pipeline for the XML
conversion is built on-the-fly during the build process
from a list of XSLT steps stored in a an XML

configuration file. This approach simplifies and
automates the creation of XProc pipelines for new
datasets: for example, developers converting new datasets
have to create and maintain a simple XML file with a list

Page 55 of 177

Continuous Integration for XML and RDF Data

of steps rather than a complex XProc pipeline with
several input and output ports. On the other hand, the
generated XProc file needed to be tested and we therefore
implemented unit tests using the xprocspec testing tool
[13]. Example 3, “xprocspec unit test” shows a test that,
given a valid piece of XML, expects the XProc pipeline
not to generate failed assertions on the ports for
Schematron reports.

Example 3. xprocspec unit test

<x:scenario label="test_fragment">
<x:call step="oup:main">
 <x:option name="source_lang" select="'@LANG@'"/>
 <x:input port="source">
 <x:document type="file"
 href="valid_fragment.xml"/>
 </x:input>
</x:call>
<x:context label="Schematron Validation">
 <x:document type="port"
 port="schematron_intermediate"/>
 <x:document type="port"
 port="schematron_final"/>
</x:context>
<x:expect type="xpath"
 test="count(//svrl:failed-assert)"
 equals="0"
 label="There should be no failed
 Schematron assertions"/>
</x:scenario>

2.4. Benefits of Continuous Integration

Introducing Continuous Integration in our development
workflow has been a big shift from how code used to be

written and how data used to be generated in our
department. In particular, we have seen major
improvements in the following areas:

• Code reuse: on average, 70-80% of the code written
for existing datasets could be reused for converting
new datasets into leaner XML and RDF.

• Code quality: tests ensured that code is behaving as
intended and minimized the impact of regression
bugs as new code is developed.

• Bug fixes: bugs are spotted as soon as they appear,
developers are notified instantly, and bugs are fixed
more rapidly.

• Automation: removing manual steps made the
building process faster and less error-prone.

• Integration: a fully automated building process
reduced risks, time, and costs related to integration
with existing and new systems and tools.

Figure 4, “Jenkins projects” and Figure 5, “Parametrized
build” show respectively the list of Jenkins projects and a
parametrized build inside the Lexical Conversion project.
In Figure 4, “Jenkins projects” we illustrate on purpose a
critical situation showing projects with failed builds in
red, projects with unstable builds (i.e. failing unit tests)
in amber, and project with successful builds in blue; the
weather icon illustrates the general trend.

Figure 4. Jenkins projects

Page 56 of 177

Continuous Integration for XML and RDF Data

Figure 5. Parametrized build

3. Deployment

One of the issues we faced when working with out-of-
house freelancers is that their working environments
needed to be replicated in-house in order to rerun scripts.
Indeed, even within an in-house development team it is
not uncommon to use different software tools and
operating systems. In addition, the need of development,
staging, and production environments for large projects
usually causes integration problems when deploying from
one environment to another.

In order to minimize integration issues and avoid the
classic 'but it worked on my machine' problem, we
picked up Docker as our deployment tool. Docker is an
open source software for deploying distributed
applications running inside containers [14]. It allows
applications to be moved portably between development
and production environments and provides development
and operational teams with a shared, consistent platform
for development, testing, and release.

As shown in Figure 6, “Docker Containers”, we based
our environment on a CentOS image base. This
container also deploys all the software tools employed by
subsequent containers (e.g. Linux package utilities, Java,
ant, maven, etc.). Separate ports are allocated to each
component and re-deploying the components to a
different port is simply a matter of re-mapping the
Docker container to the new port. Graph DB is deployed
as an application inside a Tomcat container. The Jenkins

container is linked to the SMTP server container in order
to send email notifications to the system administrator
and to Graph DB for reindexing purposes. Most of the
components send their logs to logstash which acts as a
centralized logging system. Logs are then searched via
ElasticSearch and visualized with Kibana. Software
components like SVN and Jira are deployed on separate
servers managed by other IT departments, therefore there
was no need to deploy them via Docker containers.

Page 57 of 177

Continuous Integration for XML and RDF Data

Figure 6. Docker Containers

CentOS

8088

Tomcat

8080

Jenkins

25

SMTP server

Graph DB

80

Linked Data
Platform

9200

ElasticSearch

5601

Kibana

12201

Logstash

8008/8443

eXist-db

Example 4, “Dockerfile for deploying eXist-db”
illustrates an example of Dockerfile for deploying eXist-
db inside a Docker container. The example is largely
based on an image pulled out from the Docker hub
registry. The script exist-setup.cmd is used to set up a
basic configuration (e.g. admin username and password).

Example 4. Dockerfile for deploying eXist-db

1 FROM centos7:latest
2 MAINTAINER Sandro Cirulli <sandro.cirulli@oup.com>
3
4 # eXist-db version
5 ENV EXISTDB_VERSION 2.2
6
7 # install exist
8 WORKDIR /tmp
9 RUN curl -LO http://downloads.sourceforge.net/exist

/Stable/${EXISTDB_VERSION}/eXist-db-setup-${EXISTDB
_VERSION}RC2.jar

10 ADD exist-setup.cmd /tmp/exist-setup.cmd
11
12 # run command line configuration
13 RUN expect -f exist-setup.cmd
14 RUN rm eXist-db-setup-${EXISTDB_VERSION}RC2.jar exi

st-setup.cmd
15
16 # set persistent volume
17 VOLUME /data/existdb
18
19 # set working directory
20 WORKDIR /opt/exist
21
22 # change default port to 8008
23 RUN sed -i 's/default="8080"/default="8008"/g'

tools/jetty/etc/jetty.xml
24
25 EXPOSE 8008 8443
26
27 ENV EXISTDB_HOME /opt/exist
28
29 # run startup script
30 CMD bin/startup.sh

4. Future Work

The aim of the OGL programme is to convert into lean
XML and RDF tens of language datasets and our project
is a work-in-progress that changes rapidly. Although we
are in the initial phase of the project, we believe we have
started building the initial foundations of a scalable and
reliable system based on continuous integration and
automatic deployment. We have identified the following
areas of further development in order to increase the
robustness of the system:

• Availability: components in the system architecture
may be down or inaccessible thus producing
cascading effects on the conversion workflow. In order
to minimize this issue, we introduced HTTP unit
tests using the HttpUnit testing framework [15].
These tests are triggered by a Jenkins project and
regularly poll the system components to ensure that
they are up and running. A more robust approach
would involve the implementation of the Circuit
Breaker Design Pattern [16] which early detects

Page 58 of 177

Continuous Integration for XML and RDF Data

system components failures, prevents the reoccurrence
of the same failure, and reduces cascading effects on
distributed systems.

• Scalability: we foresee to build large amounts of
XML and RDF data as we progress with the
conversion of other language datasets. As our system
architecture matures, we also feel an urgent need to
deploy development, staging, and production
environments. Consequently, we plan to move part of
our system architecture to the cloud in order to run
compute-intensive processes such as nightly builds
and to deploy different environments. Cloud
computing is particularly appealing for our project
thanks to auto-scaling features that allow to start and
stop automatically instances of powerful machines.
Another optimization in terms of scalability would be
to increase the number of executors for parallel
processing and to distribute builds across several slave
machines.

• Monitoring: we introduced a build monitor view in
Jenkins [17] that tracks the status of builds in real
time. The monitor view also allows to display
automatically the name of the developer who may
have broken the last build, to identify common failure
causes by catching the error message in the logs, and
to assign or claim broken builds so that developers
can fix them as soon as possible. We hope that this
tool will act as a deterrent for unfixed broken builds
and will increase the awareness of continuous
integration in both our team and our department.

• Code coverage and further testing: we introduced
code coverage metrics (i.e. the amount of source code
that is tested by unit tests) for Python code related to
the development of the Linked Data Platform and we
would like to add code coverage for XSLT code.
Unfortunately, there is a lack of code coverage
frameworks in the XML community since we could
only identify two code coverage tools (namely XSpec
and Cakupan), one of which requires patching at the
time of writing [18]. In addition, we plan to
increment and diversify the types of testing (e.g. more

unit tests, security tests, acceptance tests, etc.). Finally,
in order to avoid unnecessary stress on Jenkins and
SVN servers, we would like to replace the polling of
SVN via Jenkins with SVN hooks so that an SVN
commit will automatically trigger the tests execution.

• Deployment orchestration: the number of
containers increased steadily since we started to
deploy via Docker. Moreover, some containers are
linked and need to be started following a specific
sequence. We plan to orchestrate the deployment of
Docker container and there are several tools for this
task (e.g. Machine, Swarm, Compose/Fig).

5. Conclusion

In this paper we described how we set up a framework
based on continuous integration and automated
deployment for converting large amounts of XML and
RDF data. We discussed the build workflows and the
testing process and highlighted the benefits of
continuous integration in terms of code quality and
reuse, integration, and automation. We illustrated how
the deployment of system components was automated
using Docker containers. Finally, we discussed our most
recent work to improve the framework and identified
areas for further development related to availability,
scalability, monitoring, and testing.

In conclusion, we believe that continuous integration
and automatic deployment contributed to improve the
quality of our XML and RDF data as well as our code
and we plan to keep improving our workflows using
these software engineering practices.

6. Acknowledgements

The work described in this paper was carried out by a
team of developers at OUP. This team included Khalil
Ahmed, Nick Cross, Matt Kohl, and myself. I gratefully
acknowledge my colleagues for their precious and
professional work on this project.

Bibliography

[1] Oxford's Global Languages Initiative. OUP. Accessed: 8 May 2015.
http://www.oxforddictionaries.com/words/oxfordlanguage

[2] Matt Kohl, Sandro Cirulli, and Phil Gooch. From monolithic XML for print/web to lean XML for data: realising
linked data for dictionaries. In Conference Proceedings of XML London 2014. June 7-8, 2014.
doi:10.14337/XMLLondon14.Kohl01

[3] Martin Fowler. 2006. Continuous Integration. Accessed: 8 May 2015.
http://martinfowler.com/articles/continuousIntegration.html

Page 59 of 177

Continuous Integration for XML and RDF Data

[4] John Ferguson Smart. 2011. Jenkins - The Definitive Guide. O’Reilly Media, Inc.. Sebastopol, CA.
ISBN 978-1-449-30535-2.

[5] Jenkins CI. Jenkins. Accessed: 8 May 2015.
http://jenkins-ci.org

[6] ZeroTurnaround. 10 Kick-Ass Technologies Modern Developers Love. Accessed: 8 May 2015.
http://zeroturnaround.com/rebellabs/10-kick-ass-technologies-modern-developers-love/6

[7] Jenkins CI. Build Flow Plugin. Accessed: 8 May 2015.
https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Plugin

[8] Jeni Tennison. XSpec - BDD Framework for XSLT. Accessed: 8 May 2015.
http://code.google.com/p/xspec

[9] Benoit Mercier. Including XSLT stylesheets testing in continuous integration process. In Proceedings of Balisage:
The Markup Conference 2011. Balisage Series on Markup Technologies. vol. 7. August 2-5, 2011.
doi:10.4242/BalisageVol7.Mercier01

[10] Jxsl - Java XSL code library. Accessed: 8 May 2015.
https://code.google.com/p/jxsl/

[11] Jeni Tennison. XSpec - Running with ant. Accessed: 8 May 2015.
https://code.google.com/p/xspec/wiki/RunningWithAnt

[12] Agile Knowledge Engineering and Semantic Web (AKSW). RDFUnit. Accessed: 8 May 2015.
http://aksw.org/Projects/RDFUnit.html

[13] Jostein Austvik Jacobsen. xprocspec - XProc testing tool. Accessed: 8 May 2015.
http://josteinaj.github.io/xprocspec/

[14] Docker. Docker. Accessed: 8 May 2015.
https://www.docker.com/whatisdocker/

[15] Russell Gold. 2008. HttpUnit. Accessed: 8 May 2015.
http://httpunit.sourceforge.net

[16] Michael T. Nygard. 2007. Release it! Design and Deploy Production-Ready Software. The Pragmatic
Programmers, LLC. Dallas, Texas - Raleigh, North Carolina.
ISBN 978-0978739218.

[17] Jenkins CI. Build Monitor Plugin. Accessed: 8 May 2015.
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin

[18] Google Groups. XSpec Coverage. Accessed: 8 May 2015.
https://groups.google.com/forum/#!topic/xspec-users/VRlCTR5KvIU

Page 60 of 177

Continuous Integration for XML and RDF Data

