
XSpec v0.5.0
Sandro Cirulli

XSpec and Oxford University Press

<sandro.cirulli@oup.com>

Abstract

XSpec is an open source unit test and behaviour driven
development framework for XSLT and XQuery. XSpec
v0.5.0 was released in January 2017 and included new
features such as XSLT 3.0 support and JUnit report for
integration with continuous integration tools. The new
release also fixed long standing bugs, provided feature parity
between the Windows and MacOS/Linux scripts, integrated
an automated test suite, and updated the documentation.
XSpec v0.5.0 is currently included in oXygen 19.0.

This paper highlights the importance of testing, provides
a brief history of the XSpec project, describes the new features
available in XSpec v0.5.0 and the work currently under
development for future releases, and reports the effort of the
XML community to revive this open source project.

Keywords: XSpec, Unit Testing, Behaviour Driven
Development, Continuous Integration

1. The Importance of Testing

Testing is a fundamental part of writing software that
aims to be robust, reliable, and maintainable. In fact,
testing can be considered as a promise made to customers
and users that the code behaves as intended. Writing tests
regularly also improves the code base as it forces
developers to write smaller units of code that can be
more easily tested, debugged, and maintained. Finally,
testing acts as self-documentation and can help other
developers to understand and modify existing code.

Testing plays a central role in software development
practices such as extreme programming (XP) and test-
driven development (TDD) as well as in agile
methodologies like Scrum and Kanban. For example, in
test-driven development, unit tests (i.e. tests for
individual units of code such as a function or a method)
are usually written by developers as they write their code
in order to make sure that new features work according
to specifications and bug fixes do not break other parts of
the code base. Unit tests increase the overall quality and
maintainability of the code and it has been estimated

that unit tests alone contribute to removing an average of
30% of defects present in software [1].

Although testing is important for any serious
software developer, there aren't many testing tools for
XSLT and XQuery when compared to other
programming languages. Furthermore, their use is not
yet very widespread. Back in 2009 Tony Graham [2]
made an inventory of all the available testing frameworks
available for XML technologies - most of which are
unfortunately not actively developed any more. XSpec
aims to fill this gap by offering a testing framework and
raising awareness about testing in the XML community.

While any piece of XSLT and XQuery code can be
tested using XSpec, the greatest return on investment
occurs when testing code that gets called and reused
frequently. Functions and named scenarios are perfect fits
for unit testing as they are self-contained pieces of code
upon which other parts of the code base may rely.

Integration with other testing and automation tools is
also a key part of testing frameworks as unit tests are
typically triggered automatically on events such as
commits to the code base or software builds. Software
development practices such as continuous integration
(CI) popularized the importance of integrating
development work into the code base on a daily basis,
running test suites automatically, and providing
developers with fast feedback when new code breaks tests
or software builds. As a result, debugging and fixing bugs
at the early stages of development improves the
productivity of software developers and reduces the
overall risk and cost of code releases and software
maintenance.

2. A Brief History of XSpec

XSpec was created by Jeni Tennison in 2008 and is
inspired by the RSpec testing framework for Ruby. Jeni
Tennison presented XSpec at XML Prague 2009 [3] and
released it as open source under the MIT license on
Google Code. XSpec v0.3.0 was integrated in oXygen
14.0 in 2012 and this helped to spread its use and raise
awareness about testing among XSLT developers.

doi:10.14337/XMLLondon17.Cirulli01Page 68 of 102

The project was maintained and expanded by Florent
Georges who released v0.4.0-RC in 2012. Unfortunately
active development stagnated between 2012 and 2015
with no further releases. The code base was moved from
Google Code (now defunct) to GitHub in 2015.

I started contributing actively to XSpec in 2016 in
order to fix an old bug and add a new feature I
implemented at work. I forked the project and after few
months I transferred my fork to the XSpec organisation
repository under https://github.com/xspec/xspec. To my
surprise, several people started contributing by raising
issues and sending pull requests. This recreated an XSpec
community that will hopefully sustain the project in the
long term. This process culminated in release v0.5.0 in
January 2017.

XSpec is under active development and new features
and bug fixes are regularly merged into the master branch
as soon as they are available and pass the test suite. For
those who prefer a more stable version, the latest release
is available as a zip file and can be retrieved from the
official release page on GitHub [4].

3. New Features

A selection of the new features released in XSpec v0.5.0
is presented here. The full list of new features is available
in the official release notes [4]. New features come with a
test that makes sure that the feature behaves according to
the specifications. Tests also act as documentation to
show how the feature is implemented and are often used
as examples in the documentation available on the
official wiki [5].

3.1. XSLT 3.0 Support

XSpec now supports XSLT 3.0 [6]. This patch was
provided by oXygen which first integrated it in its XML
editor.

To illustrate XSLT 3.0 support, Example 1, “XSLT
3.0 Example” shows an example of XSLT that makes use
of the inline function expression available in XPath 3.0
[7]:

Example 1. XSLT 3.0 Example

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs" version="3.0">

 <xsl:template name="supportXPath3">

 <root>

 <question>

 <xsl:text>Does XSpec

 support XPath 3.0?</xsl:text>

 </question>

 <answer>

 <xsl:value-of select="

 let $answer := 'Yes it does'

 return $answer"/>

 </answer>

 </root>

 </xsl:template>

</xsl:stylesheet>

The template can be tested using the XSpec test in
Example 2, “XSpec Test for XSLT 3.0”. Note the use of
@xslt-version specifying the version of XSLT (when
@xslt-version is not provided, XSpec uses XSLT 2.0 by
default).

Example 2. XSpec Test for XSLT 3.0

<x:description

 xmlns:x="http://www.jenitennison.com/xslt/xspec"

 stylesheet="xspec-xslt3.xsl" xslt-version="3.0">

 <x:scenario label="When testing the inline

 function expression in XPath 3">

 <x:call template="supportXPath3"/>

 <x:expect label="it returns the expected answer">

 <root>

 <question>Does XSpec

 support XPath 3.0?</question>

 <answer>Yes it does</answer>

 </root>

 </x:expect>

 </x:scenario>

</x:description>

Page 69 of 102

XSpec v0.5.0

3.2. JUnit Support

JUnit [8] is a popular unit testing framework for Java.
JUnit reports are XML-based and are understood
natively by popular continuous integration servers such
as Jenkins.

In the past XSpec reports where only available in
XML and HTML. XSpec v0.5.0 introduced JUnit
reports which can be easily generated with the -j option
from the command line as illustrated in Example 3,
“Run XSpec with JUnit Option” (the sample file escape-
for-regex.xspec is available in the tutorial folder on
GitHub):

Example 3. Run XSpec with JUnit Option

/bin/xspec.sh -j tutorial/escape-for-regex.xspec

Example 4, “JUnit Report” shows an example of the
generated JUnit report with a successful and a failing
test:

Example 4. JUnit Report

<testsuites>

 <testsuite name="When processing a list of phrases" tests="2" failures="1">

 <testcase name="All phrase elements should remain" status="passed"/>

 <testcase name="Strings should be escaped and status attributes should

 be added" status="failed">

 <failure message="expect assertion failed"><x:expect

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:test="http://www.jenitennison.com/xslt/unit-test"

 xmlns:x="http://www.jenitennison.com/xslt/xspec"

 xmlns:functx="http://www.functx.com">

 <phrases>

 <phrase status="same">Hello!</phrase>

 <phrase status="same">Goodbye!</phrase>

 <phrase status="changed">\(So long!\)</phrase>

 </phrases>

 </x:expect>

 </failure>

 </testcase>

 </testsuite>

</testsuites>

Page 70 of 102

XSpec v0.5.0

Figure 1. Test Result Trend in Jenkins

Figure 2. Test Result in Jenkins

Note that the generation of JUnit reports requires Saxon
9 EE or Saxon 9 PE as the implementation makes use of
Saxon extension functions.

JUnit reports can be easily plugged into continuous
integration tools that understand JUnit natively such as
Jenkins. The XSpec documentation describes how to
configure Jenkins to run XSpec tests and generate JUnit
reports [9]. Figure 1, “Test Result Trend in Jenkins” and
Figure 2, “Test Result in Jenkins” show a test result trend
and details of a failing test auto-generated by Jenkins
from JUnit reports.

3.3. Testing XSpec

XSpec itself is tested using a mix of XSpec tests and shell
and batch scripts. The test suite is executed automatically
on online continuous integration servers (Travis for
Linux and AppVeyor for Windows) every time a pull
request or a code merge are initiated. This allows to spot
regression bugs as soon as they appear and makes code
reviews and approval of pull requests quicker and safer.
In addition, testing XSpec with continuous integration
tools such as Travis and AppVeyor provides example
configuration and documentation for other projects that

Page 71 of 102

XSpec v0.5.0

wish to use XSpec to run tests in continuous integration
workflows.

3.4. Feature Parity between Windows and
MacOS/Linux

XSpec can be executed from the command line using a
batch script in Windows or a shell script in MacOS/
Linux. Historically, the batch script lagged behind and
did not provide all the options available in the shell
script. XSpec 0.5.0 ships with a brand new version of the
batch script that fully supports existing and new
command line options available in the shell script. In
addition, a test suite for the batch script is now executed
on every new commit thus providing the same level of
testing available for the shell script.

4. Bug Fixes

The full list of bug fixes is available in the official release
notes [4]. Most bug fixes come with a test that makes
sure that future code changes do not introduce regression
bugs.

As example of defects fixed in this release, it is worth
mentioning the code coverage bug. XSpec relies on
Saxon extension functions for the implementation of the
code coverage option that allows to check which parts of
the XSLT code are covered by XSpec tests. This
functionality was broken for several years due to a change
in the implementation of the TraceListener interface
between Saxon 9.2 and 9.3 and the bug was flagged by
several users [10] [11].

This long standing issue has been fixed in v0.5.0 and
the code coverage now works with the recent versions of
Saxon EE and PE (extension functions are only available
with these two versions of Saxon). Documentation on
how to use the code coverage functionality is now
available on the official wiki page [12].

5. Future Work

XSpec users can raise issues and feature requests on the
official issue tracker on GitHub and contribute with pull
requests. Some of the work that is currently under
development or scheduled for the future releases of
XSpec includes:

• Schematron support: A feature request was raised in
order to have Schematron support in XSpec. This
included use cases such as writing XSpec tests for

Schematron rules and schemas. Vincent Lizzi
provided a pull request for Schematron support in
XSpec and demoed it during an open session at JATS-
Con in April 2017. As I write these lines, the pull
request has just been merged into the main XSpec
code base and documentation will soon be available
on the wiki. Schematron users are invited to test this
new functionality and provide feedback.

• Full XQuery support: although XSpec allows to test
both XSLT and XQuery, XQuery support is often
lagging behind or untested. This work aims to bring
full feature parity between XSLT and XQuery and to
provide tests and documentation covering XQuery. A
tutorial on how to write XSpec tests for XQuery is in
the process of being written and will soon be available
in the official documentation.

• Harmonisation with oXygen: XSpec is integrated by
default in oXygen but some features such as the
output report and the ant configuration are
implemented differently. This work aims to
harmonize XSpec so that the version provided in
XSpec is the same version available on GitHub.

6. Conclusion

Testing is a crucial part of software development and
XSpec aims to provide XSLT, XQuery, and Schematron
developers with a testing framework for making their
code more robust, reliable, and maintainable. After few
years of stagnation, active development of XSpec
restarted and culminated in the release of v0.5.0 in
January 2017. This new release included several new
features and fixed long standing bugs. Being an open
source project, XSpec is developed and maintained by an
active community gathering around the GitHub
repository at https://github.com/xspec/xspec and
welcomes new and existing users to contribute with
issues, questions, and pull requests.

7. Acknowledgements

I would like to thank Jeni Tennison for creating XSpec
back in 2008 and releasing it under an open source
licence. I'm also deeply indebted to Florent Georges for
maintaining the project in the past years and to Tony
Graham for his support during the migration to GitHub.
I own my deepest gratitude to the XSpec community
who contributed to this release and provided me with
encouragement and support, their GitHub user names
are listed in the official release notes. A special thank you

Page 72 of 102

XSpec v0.5.0

to AirQuick - I ignore his real name - whose many pull
requests, comments, and code reviews have been
extremely valuable for the development of XSpec.

Bibliography

[1] Steve McConnell. 2006. Software Estimation: Demystifying the Black Art. Microsoft Press. Redmond,
Washington.
ISBN 978-0735605350.

[2] Tony Graham. Testing XSLT. In Conference Proceedings of XML Prague 2009. March 21-22, 2009.
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=83

[3] Jeni Tennison. Testing XSLT with XSpec. In Conference Proceedings of XML Prague 2009. March 21-22,
2009.
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=105

[4] XSpec. XSpec v0.5.0.
https://github.com/xspec/xspec/releases/tag/v0.5.0
Accessed: 5 May 2017.

[5] XSpec. XSpec Documentation Wiki.
https://github.com/xspec/xspec/wiki
Accessed: 5 May 2017.

[6] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 3.0. Michael Kay.
http://www.w3.org/TR/xslt-30/

[7] World Wide Web Consortium (W3C). XML Path Language (XPath) 3.0. Jonathan Robie, Don Chamberlin,
Michael Dyck, and John Snelson. 8 April 2014.
http://www.w3.org/TR/xpath-30/

[8] JUnit. JUnit.
http://junit.org
Accessed: 5 May 2017.

[9] XSpec. Integration with Jenkins.
https://github.com/xspec/xspec/wiki/Integration-with-Jenkins
Accessed: 5 May 2017.

[10] XSpec Users Google Group. XSpec 0.3.0.
https://groups.google.com/forum/#!topic/xspec-users/0BIzNfFv4-Y
Accessed: 5 May 2017.

[11] Sandro Cirulli. Continuous Integration for XML and RDF Data. In Conference Proceedings of XML London
2015. June 6-7, 2015.
doi:10.14337/XMLLondon15.Cirulli01

[12] XSpec. XSpec Code Coverage.
https://github.com/xspec/xspec/wiki/Code-Coverage
Accessed: 5 May 2017.

Page 73 of 102

XSpec v0.5.0

